

Low Intensity Cycles

Paul Derwent 27 February 2020

Started with an observation

- Plot of B:RFSUM up and running, saw an outlier trace
- Was on the SY cycle
 - Intensity down by factor of 6
 - Voltage up by 40 kV

Started with an observation

- Plot of B:RFSUM up and running, saw an outlier trace
- Was on the SY cycle
 - Intensity down by factor of 6
 - Voltage up by 40 kV
- Thought about it for a bit
 - Probably beam loading
- RFSUM is measured gap voltage
 - up to phase and calibration between the cavities

Phasor Diagram

- Conventions from TM-1915 for the phasor diagram
 - Accelerating voltage is +x
 - $V_{acc} = V_{gap} Sin(\phi s)$

- Drawn below transition as φs < 90
- Max effect at transition (ϕ s = 90)

Necessary for acceleration

Phasor Diagram

- Conventions from TM-1915 for the phasor diagram
 - Accelerating voltage is +x
 - $V_{acc} = V_{gap} Sin(\phi s)$
 - Beam loading is -x
 - Beam loading
 - $V_{beam} = i_b R_{shunt}$
 - i_b ~ 2x beam current (Fourier component)
 - $R_{shunt} = 60 \text{ k}\Omega$
- Drawn below transition as φs < 90
- Max effect at transition (ϕ s = 90)

Phasor Diagram

- Conventions from TM-1915 for the phasor diagram
 - Accelerating voltage is +x
 - $V_{acc} = V_{gap} Sin(\phi s)$
 - Beam loading is -x
 - Beam loading
 - $V_{beam} = i_b R_{shunt}$
 - i_b ~ 2x beam current (Fourier component)
 - $R_{shunt} = 60 \text{ k}\Omega$
- Drawn below transition as φs < 90
- Max effect at transition (ϕ s = 90)

Calculate the effects

- Not doing active compensation
 - Have fixed voltage curve (up to feedback loops)
- Assume that have tuned RF curves for the NuMI and BNB cycles
 - So that energy gain (V_{acc}) matches the Bdot
- SY cycles have lower intensity
 - V_{beam} is smaller, so gap voltage is larger
- Calculated V_{gap} under these assumptions

Observations

- Averaged over 20 pulses
 - Couple seconds on \$15
 - 20 minutes on \$13
- Change in shape looks like prediction!

- Guess it would have phase / energy oscillations as the energy gain is greater than required by Bdot.
- Feedback loops ?
 - Two Phase loops
 - STnnE: Phase of drive/gap and reference in sync
 - ±5 degree swing above transition for \$15, not for \$13?
 - Mode 1 / Mode 2 intensity dependent signals show up at 20 msec
 - PDnnE: Phase of cavity (bias supply) and drive in sync
 - Not sure what is going on

- Guess it would have phase / energy oscillations as the energy gain is greater than required by Bdot.
- Feedback loops mitigate it?
 - RPOS is different?
 - Not sure what is going on
- Losses?
 - It is 1 cycle out of 856!
 - With intensity down by factor of 7!

Longitudinal phase space would look different – voltage gain does not match Bdot

Looked at them in the Recycler with TARDIS

Nominal Cycle

Low Intensity Cycle

Looked at them in the Recycler with TARDIS

Nominal Cycle

Low Intensity Cycle

Longitudinal phase space would look different – with a BiNormal input distribution

